

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[tris(μ -4,4'-bipyridine- $\kappa^2 N:N'$)bis(μ -L-lysinato- $\kappa^3 N^1 O^1 O^1 O^1$ dizinc(II)] tetranitrate 0.6-hydrate dimethylformamide disolvate1

Shu-Qiang Li^a and Ning-Hai Hu^{b*}

^aOrthopaedic Department, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and ^bChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China Correspondence e-mail: hunh@ciac.jl.cn

Received 25 February 2012; accepted 13 April 2012

Key indicators: single-crystal X-ray study; T = 187 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.041; wR factor = 0.107; data-toparameter ratio = 13.5.

In the title compound, $\{[Zn_2(C_6H_{14}N_2O_2)_2(C_{10}H_8N_2)_3]$ - $(NO_3)_4 \cdot 0.6H_2O \cdot 2C_3H_7NO_{n}$, the Zn^{II} ion is six-coordinated with a distorted octahedral geometry by two carboxylate O atoms and one amino N atom from two L-lysinate (L-lys) ligands, and three N atoms from three 4,4'-bipyridine (4,4'bipy) ligands. The Zn^{II} ions are connected by the carboxylate groups of the L-lys ligands in the a-axis direction and the bridging 4,4'-bipy ligands in the b- and c-axis directions, forming a three-dimensional cationic framework with channels along [100]. The nitrate anions and solvent water and dimethylformamide (DMF) molecules are located in the channels and linked to the cationic framework by N-H···O and $O-H \cdots O$ hydrogen bonds. The occupancy of the water molecule was fixed at 0.6. One of the DMF molecules is disordered over two sets of sites, with an occupancy ratio of 0.632:0.368 (11).

Related literature

For general background to the structures and properties of chiral coordination polymers, see: Dai et al. (2005); Kesanli & Lin (2003); Vaidhyanathan et al. (2006); Zaworotko (2001). For the structures of metal complexes with 4,4'-bipy and Ltyrosinate ligands, see: Li & Hu (2011); Zhang & Hu (2009). For the structures of Cu^{II} complexes with 4,4'-bipy and Lvalinate ligands, see: Lou et al. (2007); Lou & Hong (2008).

Experimental

Crystal data

 $\beta = 93.197 \ (1)^{\circ}$ $[Zn_2(C_6H_{14}N_2O_2)_2(C_{10}H_8N_2)_3]$ -V = 2970.0 (2) Å³ $(NO_3)_4 \cdot 0.6H_2O \cdot 2C_3H_7NO$ $M_r = 1296.76$ Z = 2Monoclinic, P2 a = 10.3039 (4) Å b = 24.9425 (10) Å c = 11.5740 (4) Å

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.801, \ T_{\max} = 0.893$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.0011087 reflections 820 parameters 63 restraints

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-1}$ T = 187 K $0.26 \times 0.23 \times 0.13 \text{ mm}$

16802 measured reflections 11087 independent reflections 10039 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.81 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 5102 Friedel pairs Flack parameter: 0.003 (9)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1A···O15	0.95	1.91	2.823 (11)	159
$O1W-H1B\cdots O10^{i}$	0.90	2.48	3.182 (8)	136
$N7 - H7A \cdots O3^{ii}$	0.92	2.54	3.066 (4)	117
$N7 - H7B \cdot \cdot \cdot O18$	0.92	2.03	2.940 (9)	167
$N7 - H7B \cdot \cdot \cdot O18'$	0.92	2.32	3.215 (17)	163
N8-H8A···O17 ⁱⁱⁱ	0.91	1.86	2.755 (7)	166
$N8 - H8B \cdot \cdot \cdot O8^{iii}$	0.91	2.04	2.842 (6)	147
$N8 - H8B \cdot \cdot \cdot O9^{iii}$	0.91	2.39	3.057 (6)	130
N8−H8C···O5 ⁱⁱⁱ	0.91	2.00	2.907 (7)	172
$N9-H9A\cdotsO1^{iv}$	0.92	2.44	2.999 (4)	119
N9−H9B···O10	0.92	2.16	3.075 (4)	174
N10−H10A···O14	0.91	2.00	2.869 (6)	160
N10−H10A···O16	0.91	2.44	3.183 (8)	139
$N10-H10B\cdots O11^{v}$	0.91	2.00	2.844 (5)	154
$N10-H10B\cdots O12^{v}$	0.91	2.48	3.066 (6)	123
$N10-H10C\cdots O7^{i}$	0.91	2.04	2.914 (7)	161

Symmetry codes: (i) x, y, z + 1; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iii) x, y - 1, z; (iv) $-x + 2, y + \frac{1}{2}, -z + 1;$ (v) x, y + 1, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine

metal-organic compounds

structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2149).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. & Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313–1315.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.
- Li, S.-Q. & Hu, N.-H. (2011). Acta Cryst. E67, m884-m885.
- Lou, B.-Y. & Hong, M.-C. (2008). Acta Cryst. E64, m405.
- Lou, B.-Y., Huang, X.-D. & Lin, X.-C. (2007). Z. Anorg. Allg. Chem. 633, 372– 374.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. (2006). Angew. Chem. Int. Ed. 45, 6495– 6499.
- Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.
- Zhang, S. & Hu, N.-H. (2009). Acta Cryst. C65, m7-m9.

supplementary materials

Acta Cryst. (2012). E68, m633-m634 [doi:10.1107/S1600536812016121]

Poly[[tris(μ -4,4'-bipyridine- $\kappa^2 N$:N')bis(μ -L-lysinato- $\kappa^3 N^1$, O^1 : O^1 ')dizinc(II)] tetranitrate 0.6-hydrate dimethylformamide disolvate]

Shu-Qiang Li and Ning-Hai Hu

Comment

Chiral coordination polymers have attracted much interest because they exhibit potential applications in asymmetric catalysis and chiral separation (Kesanli & Lin, 2003). Mixed-ligand systems containing both chiral and achiral ligands have been developed as an effective approach to construct chiral complexes (Dai *et al.*, 2005; Vaidhyanathan *et al.*, 2006; Zaworotko, 2001). Amino acids are a kind of candidate for chiral building blocks, with their amino and carboxylate groups binding to metal ions (Lou *et al.*, 2007; Lou & Hong, 2008). We previously reported a chiral one-dimensional Zn(II) complex, $[Zn(L-tyr)(4,4'-bipy)_2(H_2O)]NO_3.2H_2O$, (II), (L-tyr = L-tyrosinate, 4,4'-bipy = 4,4'-bipyridine) (Li & Hu, 2011) and a chiral two-dimensional Cu(II) complex, $[Cu_2(L-tyr)_2(4,4'-bipy)(NO_3)_2(H_2O)_2]$, (III), (Zhang & Hu, 2009). Herein, we present the title compound, (I), a three-dimensional Zn(II) complex with *L*-lysinate (*L*-lys) and 4,4'-bipy ligands.

In (I), the Zn(II) ion is six-coordinated by one N atom and two O atoms from two *L*-lys ligands, three N atoms from three 4,4'-bipy ligands in a distorted octahedral geometry (Fig. 1). The *L*-lys ligands bind to the Zn atoms in a μ -($\kappa^3 N, O:O'$) mode, the same as that observed in (II) and (III). The 4,4'-bipy ligands adopt a bridging mode, similar to that in (III) but different from the monodentate terminal mode in (II). The 4,4'-bipy ligands bridge the Zn atoms in the *b* and *c* directions, while the *L*-lys ligands bridge adjacent Zn atoms through the carboxylate groups in the *a* direction, forming a three-dimensional chiral cationic framework, which exhibits channels in the *a* direction (Fig. 2). The nitrate anions and the water and dimethylformamide (DMF) solvent molecules are located in the channels. The ammonium tails of the *L*-lys ligands extend into the channels and form N—H···O hydrogen bonds with the nitrate anions and DMF molecules (Table 1). Moreover, the water molecules and α -amino groups acting as donors form O—H···O and N—H···O hydrogen bonds with the nitrate anions, carboxylate groups and DMF molecules.

Experimental

 $Zn(NO_3)_2.6H_2O$ (0.119 g, 0.4 mmol), *L*-lysine (0.058 g, 0.4 mmol) and 4,4'-bipy (0.062 g, 0.4 mmol) were dissolved in water/DMF (20 ml, v/v 1:1) under stirring. The resulting solution was allowed to stand at room temperature and colorless crystals suitable for X-ray diffraction analysis were obtained after two weeks.

Refinement

One of the DMF molecules is disordered over two sets of sites, with an occupancy ratio of 0.632 (11):0.368 (11). The water molecule is partly occupied. The occupancy factor was initially refined to 0.612 (11) and it was fixed at 0.60 in the final refinement. H atoms of the water molecule were located in a difference Fourier map and refined as riding atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH₂), 1.00 (CH) and 0.98 (CH₃) Å and N—H = 0.92 (NH₂) and 0.91 (NH₃) Å and with $U_{iso}(H) =$

$1.2U_{eq}(C, N).$

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms and the minor component of the disordered DMF molecule have been omitted for clarity. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z; (ii) x, y, 1 + z; (iii) 2 - x, 1/2 + y, 1 - z; (iv) x, y, -1 + z; (v) 2 - x, -1/2 + y, 1 - z; (vi) 1 - x, 1/2 + y, 1 - z.]

Figure 2

A view of the crystal packing of (I). H atoms have been omitted for clarity. Dashed lines denote hydrogen bonds.

Poly[[tris(μ -4,4'-bipyridine- $\kappa^2 N:N'$)bis(μ -L- lysinato- $\kappa^3 N^1,O^1:O^1$)dizinc(II)] tetranitrate 0.6-hydrate dimethylformamide disolvate]

Crystal data

$[Zn_2(C_6H_{14}N_2O_2)_2(C_{10}H_8N_2)_3]$
$(NO_3)_4 \cdot 0.6H_2O \cdot 2C_3H_7NO$
$M_r = 1296.76$
Monoclinic, $P2_1$
Hall symbol: P 2yb
a = 10.3039 (4) Å
<i>b</i> = 24.9425 (10) Å
c = 11.5740 (4) Å
$\beta = 93.197 (1)^{\circ}$
V = 2970.0 (2) Å ³
Data collection

Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.801, T_{\max} = 0.893$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.0011087 reflections 820 parameters Z = 2 F(000) = 1352 $D_x = 1.450 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7390 reflections $\theta = 2.4-26.0^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 187 KBlock, colorless $0.26 \times 0.23 \times 0.13 \text{ mm}$

16802 measured reflections 11087 independent reflections 10039 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -11 \rightarrow 12$ $k = -29 \rightarrow 30$ $l = -13 \rightarrow 14$

63 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0664P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.013$ $\Delta\rho_{max} = 0.81$ e Å⁻³ $\Delta \rho_{\min} = -0.33 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 5102 Friedel pairs Flack parameter: 0.003 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.56823 (4)	0.220094 (14)	0.41441 (3)	0.01985 (10)	
Zn2	0.93007 (3)	0.646779 (14)	0.56498 (3)	0.01945 (10)	
01	0.7620 (2)	0.19164 (10)	0.4199 (2)	0.0224 (5)	
O2	0.8839 (2)	0.11711 (10)	0.4272 (2)	0.0223 (5)	
O3	0.7372 (2)	0.67874 (10)	0.5549 (2)	0.0214 (5)	
O4	0.6204 (2)	0.75003 (10)	0.5995 (2)	0.0226 (6)	
N1	0.6347 (3)	0.30147 (14)	0.4389 (3)	0.0247 (7)	
N2	0.8485 (3)	0.56755 (12)	0.5548 (2)	0.0213 (6)	
N3	0.5749 (3)	0.23036 (15)	0.2219 (3)	0.0285 (8)	
N4	0.5693 (3)	0.21814 (15)	-0.3919 (2)	0.0232 (6)	
N5	0.9354 (3)	0.63940 (14)	0.7606 (2)	0.0241 (7)	
N6	0.9337 (3)	0.64466 (16)	1.3743 (2)	0.0234 (6)	
N7	0.5354 (3)	0.13638 (14)	0.4023 (3)	0.0301 (8)	
H7A	0.4746	0.1266	0.4537	0.036*	
H7B	0.5024	0.1281	0.3290	0.036*	
N8	0.7276 (5)	-0.09001 (18)	0.1681 (4)	0.0660 (13)	
H8A	0.6545	-0.1075	0.1411	0.079*	
H8B	0.7932	-0.1141	0.1809	0.079*	
H8C	0.7509	-0.0655	0.1148	0.079*	
N9	0.9625 (3)	0.73065 (13)	0.5758 (3)	0.0254 (7)	
H9A	1.0364	0.7373	0.6219	0.030*	
H9B	0.9750	0.7441	0.5032	0.030*	
N10	0.8106 (4)	0.94545 (17)	0.7743 (4)	0.0570(11)	
H10A	0.8015	0.9123	0.8058	0.068*	
H10B	0.7364	0.9646	0.7819	0.068*	
H10C	0.8786	0.9627	0.8116	0.068*	
C1	0.5721 (4)	0.34315 (16)	0.3901 (3)	0.0316 (9)	
H1	0.5006	0.3366	0.3365	0.038*	
C2	0.6079 (4)	0.39617 (16)	0.4148 (3)	0.0312 (9)	
H2	0.5605	0.4249	0.3790	0.037*	
C3	0.7122 (4)	0.40660 (15)	0.4913 (3)	0.0232 (8)	
C4	0.7785 (4)	0.36297 (16)	0.5417 (3)	0.0286 (9)	
H4	0.8515	0.3684	0.5942	0.034*	
C5	0.7360 (3)	0.31163 (15)	0.5139 (3)	0.0255 (8)	
H5	0.7807	0.2821	0.5496	0.031*	
C6	0.7558 (4)	0.55603 (16)	0.4730 (3)	0.0274 (8)	
H6	0.7195	0.5847	0.4280	0.033*	
C7	0.7106 (4)	0.50566 (15)	0.4503 (3)	0.0274 (8)	
H7	0.6470	0.4998	0.3890	0.033*	
C8	0.7575 (3)	0.46277 (15)	0.5168 (3)	0.0237 (8)	
C9	0.8495 (4)	0.47439 (16)	0.6051 (3)	0.0319 (9)	

H9	0.8823	0.4467	0.6549	0.038*
C10	0.8935 (4)	0.52661 (17)	0.6205 (3)	0.0299 (9)
H10	0.9583	0.5337	0.6801	0.036*
C11	0.4679 (4)	0.24046 (18)	0.1545 (3)	0.0337 (10)
H11	0.3899	0.2483	0.1912	0.040*
C12	0.4639 (4)	0.24026 (17)	0.0350 (3)	0.0319 (9)
H12	0.3845	0.2469	-0.0084	0.038*
C13	0.5770 (4)	0.23018 (17)	-0.0211 (3)	0.0290 (10)
C14	0.6897 (4)	0.2229 (2)	0.0483 (3)	0.0358 (9)
H14	0.7709	0.2186	0.0143	0.043*
C15	0.6835 (4)	0.2221 (2)	0.1664 (3)	0.0365 (9)
H15	0.7615	0.2152	0.2117	0.044*
C16	0.4819 (4)	0.24829 (18)	-0.3386 (3)	0.0332 (10)
H16	0.4180	0.2670	-0.3851	0.040*
C17	0.4805 (4)	0.25351 (17)	-0.2188 (3)	0.0296 (9)
H17	0.4164	0.2748	-0.1848	0.035*
C18	0.5756 (4)	0.22671 (19)	-0.1495 (3)	0.0267 (9)
C19	0.6641 (4)	0.19624 (18)	-0.2039 (3)	0.0358 (10)
H19	0.7296	0.1772	-0.1599	0.043*
C20	0.6575 (4)	0.19326 (18)	-0.3237(3)	0.0349 (10)
H20	0.7205	0.1720	-0.3592	0.042*
C21	0.8295 (4)	0.6508 (2)	0.8174 (3)	0.0362 (9)
H21	0.7514	0.6586	0.7731	0.043*
C22	0.8265 (4)	0.6521 (2)	0.9363 (3)	0.0351 (9)
H22	0.7488	0.6619	0.9714	0.042*
C23	0.9371 (4)	0.63896 (17)	1.0046 (3)	0.0270(9)
C24	1 0445 (4)	0.62388(17)	0.9460(3)	0.0314(9)
H24	1.0112 (1)	0.6121	0.9880	0.038*
C25	1.0411 (4)	0.62576 (17)	0.8277(3)	0.0302 (9)
H25	1 1181	0.6169	0.7906	0.036*
C26	0 8586 (4)	0.67658 (18)	1 3066 (3)	0.0361 (10)
H26	0.8032	0 7011	1 3428	0.043*
C27	0.8563 (4)	0.67624 (19)	1.1882 (3)	0.0408(11)
H27	0.8010	0 7001	1.1002 (3)	0.049*
C28	0.9368 (4)	0.64021 (18)	1 1321 (3)	0.0759 (8)
C29	1,0147(4)	0.60713(18)	1.1521(3) 1 2027 (3)	0.0205(0)
H29	1.0700	0.5817	1.2027 (3)	0.0250 (5)
C30	1.0700	0.61110 (17)	1 3200 (3)	0.035
H30	1.0117 (4)	0.5888	1.3200 (3)	0.0275 (8)
C31	0.7762 (3)	0.14177(17)	0.4243(3)	0.033 0.0212(7)
C32	0.7702(3)	0.14177(17) 0.10546(16)	0.4278(3)	0.0212(7)
H32	0.6540	0.0022	0.4278 (3)	0.0208 (8)
C33	0.0340 0.6704 (4)	0.0522	0.3512(4)	0.032 0.0421 (11)
H33A	0.6645	0.0680	0.2694	0.051*
H33B	0.7583	0.0000	0.2004	0.051*
C34	0.7303	0.0125(2)	0.3652 (5)	0.051 0.0540 (13)
UJ4 H344	0.4840	0.0123 (2)	0.3616	0.0540 (15)
H34R	0.5881	-0.0046	0.4419	0.065*
C35	0.5001	-0.0303(2)	0.7412	0.005
035	0.0010 (0)	0.0505 (2)	0.2072 (0)	0.0012 (19)

H35A	0.5065	-0.0548	0.2719	0.097*	
H35B	0.5765	-0.0122	0.1929	0.097*	
C36	0.7015 (6)	-0.0617 (3)	0.2801 (6)	0.0804 (18)	
H36A	0.6945	-0.0886	0.3423	0.096*	
H36B	0.7754	-0.0378	0.3021	0.096*	
C37	0.7262 (3)	0.72627 (15)	0.5884 (2)	0.0175 (7)	
C38	0.8500 (3)	0.75806 (14)	0.6249 (3)	0.0239 (8)	
H38	0.8622	0.7542	0.7108	0.029*	
C39	0.8394 (4)	0.81792 (16)	0.6008 (4)	0.0371 (10)	
H39A	0.8387	0.8239	0.5162	0.045*	
H39B	0.7559	0.8312	0.6279	0.045*	
C40	0.9493 (5)	0.84975 (19)	0.6590 (5)	0.0478 (12)	
H40A	1.0329	0.8332	0.6401	0.057*	
H40B	0.9428	0.8475	0.7439	0.057*	
C41	0.9503 (5)	0.90914 (19)	0.6232 (5)	0.0618 (15)	
H41A	1.0274	0.9265	0.6620	0.074*	
H41B	0.9606	0.9110	0.5387	0.074*	
C42	0.8355 (6)	0.9400 (2)	0.6496 (5)	0.0609 (14)	
H42A	0.7586	0.9230	0.6098	0.073*	
H42B	0.8439	0.9764	0.6166	0.073*	
01W	1.0534 (7)	0.7542 (3)	1.0804 (7)	0.094(2)	0.60
HIA	0.9869	0.7577	1.0201	0.141*	0.60
HIB	1.0386	0 7803	1 1317	0.141*	0.60
N11	0.9419 (6)	0.9875(2)	0.0281(5)	0.0771(15)	0.00
05	0.9119(0) 0.8211(5)	0.9073(2) 0.9923(2)	0.0201(3) 0.0153(4)	0.0944(15)	
06	0.9935 (6)	0.9923(2) 0.9850(2)	0.0155(1) 0.1267(4)	0.0911(10)	
07	1.0058 (5)	0.9850(2) 0.9887(2)	-0.0591(5)	0.121(2) 0.0891(14)	
N12	0.9215(4)	0.9007(2) 0.81777(17)	0.0591(3)	0.0871(14) 0.0471(10)	
08	0.9215(4) 0.9535(4)	0.86466 (16)	0.3034(3) 0.2816(4)	0.0716(12)	
09	0.9555(4) 0.8025(4)	0.80580 (18)	0.2010(4) 0.2039(4)	0.0710(12) 0.0813(14)	
010	1.0025(3)	0.30530(13) 0.78428(14)	0.2939(4) 0.3412(3)	0.0813(14) 0.0488(8)	
N13	0.5965(4)	0.76428(14) 0.04442(16)	0.3412(3) 0.7044(3)	0.0408(0)	
011	0.5705(4)	-0.00369(14)	0.7044(3) 0.7245(3)	0.0408(9)	
012	0.5008(3) 0.7113(3)	0.00309(14)	0.7243(3) 0.7120(3)	0.0572(9)	
012	0.7113(3) 0.5102(3)	0.03824(13) 0.07704(15)	0.7120(3)	0.0551(10)	
N14	0.3102(3)	0.07704(13)	0.0730(3)	0.0350(9)	
014	0.8082(0) 0.7168(5)	0.8281(2)	0.9323(0)	0.0852(10)	
014	0.7108(3)	0.0430(2)	0.0013(3)	0.1010(10)	
013	0.8287(3)	0.7804(2)	0.9411(7)	0.130(2)	
010	0.8814(6)	0.8022(2)	0.9700(6)	0.130(2)	
017 N15	0.4834(3)	0.8/1/(2)	0.0970(3)	0.113(2)	
N15	0.2865 (5)	0.8070(2)	0.0072(4)	0.0790(15)	
C43	0.4144 (5)	0.8691 (3)	0.00/8 (6)	0.0826 (19)	
H43	0.4541	0.8080	-0.0644	0.126 (4)	
C44	0.2217 (8)	0.8683 (4)	0.1147 (6)	0.136 (4)	
H44A	0.1291	0.8392	0.104/	0.203*	
H44B	0.1281	0.8632	0.0988	0.203*	
H44C	0.23/3	0.9027	0.1010 (7)	0.203*	
C45	0.2102 (7)	0.8662 (3)	-0.1010 (5)	0.106 (3)	
H45A	0.2651	0.8547	-0.1628	0.158*	

H45B	0 1756	0 9020	-0 1187	0 158*	
H45C	0.1381	0.8409	-0.0950	0.158*	
018	0.4301 (14)	0.0931 (6)	0.1802 (10)	0.132 (6)	0.632 (11)
N16	0.4160 (12)	0.0515 (5)	0.0087 (9)	0.073 (4)	0.632 (11)
C46	0.3757 (11)	0.0613 (4)	0.1123 (9)	0.097 (5)	0.632 (11)
H46	0.3009	0.0430	0.1359	0.117*	0.632 (11)
C47	0.5301 (11)	0.0789 (5)	-0.0281 (10)	0.099 (5)	0.632 (11)
H47A	0.5649	0.1022	0.0344	0.148*	0.632 (11)
H47B	0.5067	0.1007	-0.0967	0.148*	0.632 (11)
H47C	0.5960	0.0525	-0.0469	0.148*	0.632 (11)
C48	0.340 (2)	0.0177 (10)	-0.0733 (13)	0.120 (9)	0.632 (11)
H48A	0.2504	0.0154	-0.0499	0.180*	0.632 (11)
H48B	0.3784	-0.0183	-0.0739	0.180*	0.632 (11)
H48C	0.3411	0.0333	-0.1509	0.180*	0.632 (11)
O18′	0.484 (2)	0.1047 (8)	0.1345 (15)	0.095 (8)	0.368 (11)
N16′	0.367 (2)	0.0472 (9)	0.0221 (11)	0.054 (5)	0.368 (11)
C46′	0.4563 (13)	0.0842 (6)	0.0395 (14)	0.063 (5)	0.368 (11)
H46′	0.5023	0.0960	-0.0247	0.076*	0.368 (11)
C47′	0.3019 (16)	0.0244 (8)	0.1188 (13)	0.097 (9)	0.368 (11)
H47D	0.3278	0.0440	0.1897	0.146*	0.368 (11)
H47E	0.3262	-0.0134	0.1280	0.146*	0.368 (11)
H47F	0.2075	0.0272	0.1038	0.146*	0.368 (11)
C48′	0.331 (3)	0.0274 (14)	-0.0941 (14)	0.110 (15)	0.368 (11)
H48D	0.3640	0.0521	-0.1516	0.166*	0.368 (11)
H48E	0.2365	0.0249	-0.1045	0.166*	0.368 (11)
H48F	0.3696	-0.0082	-0.1042	0.166*	0.368 (11)

Atomic displacement parameters $(Å^2)$

	T 711	T 722	T 733	T 112	T 113	T 723
	Un	U ²²	U ³³	U^{12}	U^{13}	U ²³
Zn1	0.0190 (2)	0.0191 (2)	0.02137 (18)	0.00000 (16)	0.00039 (14)	-0.00195 (16)
Zn2	0.0203 (2)	0.0185 (2)	0.01949 (18)	-0.00060 (16)	0.00063 (14)	-0.00140 (16)
01	0.0200 (12)	0.0209 (15)	0.0260 (13)	0.0019 (11)	-0.0007 (10)	-0.0023 (10)
O2	0.0192 (12)	0.0240 (15)	0.0236 (13)	0.0035 (10)	-0.0004 (10)	0.0007 (10)
O3	0.0201 (13)	0.0190 (14)	0.0249 (12)	-0.0006 (10)	-0.0017 (10)	-0.0005 (10)
O4	0.0190 (13)	0.0241 (15)	0.0246 (13)	0.0031 (10)	-0.0006 (10)	-0.0003 (10)
N1	0.0204 (16)	0.0278 (19)	0.0260 (16)	-0.0033 (13)	0.0010 (12)	-0.0022 (13)
N2	0.0237 (16)	0.0138 (16)	0.0261 (15)	0.0000 (13)	0.0000 (12)	-0.0007 (12)
N3	0.0278 (17)	0.036 (2)	0.0211 (15)	-0.0023 (15)	-0.0012 (12)	-0.0013 (14)
N4	0.0307 (16)	0.0216 (16)	0.0173 (13)	0.0035 (15)	0.0003 (11)	0.0008 (14)
N5	0.0266 (15)	0.0259 (19)	0.0199 (14)	-0.0017 (14)	0.0021 (11)	-0.0010 (13)
N6	0.0241 (15)	0.0269 (17)	0.0192 (14)	0.0011 (15)	0.0021 (11)	-0.0018 (15)
N7	0.0282 (16)	0.026 (2)	0.0362 (17)	-0.0057 (15)	0.0034 (13)	-0.0080 (13)
N8	0.077 (3)	0.047 (3)	0.072 (3)	0.024 (2)	-0.012 (2)	-0.008 (2)
N9	0.0231 (15)	0.023 (2)	0.0301 (16)	0.0003 (14)	0.0015 (12)	-0.0009 (12)
N10	0.070 (3)	0.042 (3)	0.058 (3)	0.019 (2)	0.005 (2)	-0.001 (2)
C1	0.033 (2)	0.022 (2)	0.039 (2)	-0.0016 (16)	-0.0107 (16)	0.0016 (16)
C2	0.029 (2)	0.021 (2)	0.042 (2)	-0.0020 (16)	-0.0104 (16)	0.0003 (16)
C3	0.0217 (18)	0.0210 (19)	0.0267 (18)	0.0017 (14)	0.0010 (14)	0.0004 (14)

C4	0.026 (2)	0.026 (2)	0.033 (2)	-0.0053 (16)	-0.0038 (15)	-0.0021 (16)
C5	0.024 (2)	0.019 (2)	0.033 (2)	0.0008 (15)	-0.0032 (15)	-0.0016 (15)
C6	0.026 (2)	0.025 (2)	0.030 (2)	0.0019 (16)	-0.0066 (15)	0.0000 (15)
C7	0.027 (2)	0.020 (2)	0.034 (2)	0.0017 (16)	-0.0065 (15)	-0.0033 (15)
C8	0.0217 (18)	0.0211 (19)	0.0280 (19)	-0.0027 (14)	-0.0017 (14)	-0.0037 (14)
C9	0.038 (2)	0.021 (2)	0.035 (2)	-0.0032 (16)	-0.0142 (17)	0.0056 (16)
C10	0.033 (2)	0.025 (2)	0.031 (2)	-0.0040 (16)	-0.0110 (16)	-0.0011 (16)
C11	0.037 (2)	0.045 (3)	0.0198 (19)	0.0031 (19)	0.0057 (16)	-0.0015 (17)
C12	0.027 (2)	0.042 (3)	0.027 (2)	0.0018 (17)	-0.0035 (16)	-0.0009 (17)
C13	0.037 (2)	0.031 (3)	0.0192 (18)	0.0016 (18)	0.0038 (15)	0.0005 (16)
C14	0.0264 (19)	0.057 (3)	0.0240 (18)	0.006 (2)	0.0041 (14)	0.001 (2)
C15	0.0234 (19)	0.060 (3)	0.0255 (18)	0.003 (2)	-0.0005 (14)	0.001 (2)
C16	0.035 (2)	0.043 (3)	0.0220 (19)	-0.0008 (19)	-0.0001 (16)	0.0011 (17)
C17	0.035 (2)	0.033 (2)	0.0207 (19)	0.0098 (18)	-0.0020 (15)	-0.0057 (16)
C18	0.0277 (19)	0.030 (2)	0.0223 (18)	-0.0017 (18)	0.0018 (14)	0.0004 (17)
C19	0.043 (2)	0.042 (3)	0.0222 (19)	0.0166 (19)	0.0005 (17)	0.0058 (17)
C20	0.040 (2)	0.040 (3)	0.025 (2)	0.0165 (19)	0.0025 (17)	-0.0013 (17)
C21	0.036 (2)	0.051 (3)	0.0211 (17)	0.008 (2)	-0.0032 (15)	0.002 (2)
C22	0.035 (2)	0.050 (3)	0.0201 (17)	0.009 (2)	0.0038 (14)	0.0045 (19)
C23	0.033 (2)	0.026 (2)	0.0219 (18)	0.0010 (17)	-0.0020 (14)	0.0005 (16)
C24	0.032 (2)	0.039 (3)	0.0224 (19)	0.0048 (17)	0.0001 (16)	-0.0022 (16)
C25	0.025 (2)	0.038 (3)	0.027 (2)	0.0022 (16)	0.0021 (15)	-0.0036 (16)
C26	0.050 (3)	0.036 (3)	0.0226 (19)	0.015 (2)	0.0023 (18)	-0.0023 (17)
C27	0.050 (3)	0.048 (3)	0.024 (2)	0.024 (2)	-0.0003 (18)	0.0052 (18)
C28	0.032 (2)	0.028 (2)	0.0213 (18)	0.0037 (18)	0.0032 (14)	-0.0024 (17)
C29	0.025 (2)	0.038 (2)	0.026 (2)	0.0027 (17)	0.0045 (15)	-0.0027 (17)
C30	0.027 (2)	0.029 (2)	0.0256 (19)	0.0068 (16)	-0.0046 (15)	-0.0010 (16)
C31	0.0264 (18)	0.026 (2)	0.0113 (14)	0.0009 (16)	-0.0003 (12)	0.0009 (14)
C32	0.0261 (19)	0.027 (2)	0.0272 (19)	-0.0018 (15)	0.0038 (15)	-0.0013 (15)
C33	0.034 (2)	0.033 (3)	0.059 (3)	-0.0053 (18)	0.005 (2)	-0.016 (2)
C34	0.056 (3)	0.036 (3)	0.070 (3)	-0.005 (2)	0.007 (3)	-0.009(2)
C35	0.074 (4)	0.048 (3)	0.121 (6)	-0.010(3)	0.001 (4)	-0.038(3)
C36	0.078 (4)	0.060 (4)	0.100 (5)	0.006 (3)	-0.016 (4)	-0.021(3)
C37	0.0177 (16)	0.023 (2)	0.0120 (14)	-0.0003(15)	0.0011 (11)	0.0007 (13)
C38	0.0243 (18)	0.0209 (18)	0.0264 (19)	0.0007 (14)	0.0028 (15)	-0.0009 (14)
C39	0.034 (2)	0.025 (2)	0.054 (3)	0.0025 (17)	0.012 (2)	0.0017 (19)
C40	0.040 (3)	0.031 (3)	0.074 (3)	-0.009(2)	0.017 (2)	-0.018 (2)
C41	0.084 (4)	0.033 (3)	0.072 (4)	-0.016(2)	0.032 (3)	-0.005(2)
C42	0.078 (4)	0.045 (3)	0.060 (3)	0.000 (3)	0.011 (3)	0.007 (2)
O1W	0.099 (5)	0.091 (6)	0.097 (6)	-0.014 (4)	0.046 (5)	-0.018 (4)
N11	0.110 (5)	0.055 (3)	0.064 (3)	0.008 (3)	-0.026 (3)	0.005 (3)
05	0.120 (4)	0.089 (4)	0.072 (3)	0.025 (3)	-0.010 (3)	-0.005 (2)
06	0.184 (6)	0.091 (4)	0.079 (3)	0.021 (4)	-0.066 (4)	-0.001(3)
O7	0.082 (3)	0.088 (4)	0.096 (4)	-0.007 (3)	-0.009 (3)	0.023 (3)
N12	0.042 (2)	0.050 (3)	0.049 (2)	-0.016 (2)	-0.0059 (18)	0.0044 (19)
08	0.055 (2)	0.056 (3)	0.100 (3)	-0.0173 (19)	-0.027 (2)	0.031 (2)
09	0.038 (2)	0.063 (3)	0.142 (4)	-0.013 (2)	-0.014 (2)	0.013 (3)
O10	0.0351 (17)	0.052 (2)	0.058 (2)	-0.0029 (16)	-0.0070 (15)	0.0159 (17)
N13	0.035 (2)	0.043 (2)	0.043 (2)	-0.0078 (18)	-0.0074 (16)	0.0057 (17)
	· /	× /	× /	× /	· /	· /

011	0.049 (2)	0.041 (2)	0.080 (2)	-0.0115 (16)	-0.0111 (18)	0.0115 (17)
O12	0.0346 (19)	0.048 (2)	0.081 (3)	-0.0100 (16)	-0.0079 (17)	0.0069 (19)
013	0.042 (2)	0.052 (2)	0.070 (2)	0.0007 (17)	-0.0129 (16)	0.0124 (18)
N14	0.083 (4)	0.059 (4)	0.113 (5)	-0.013 (3)	-0.002 (4)	-0.010 (3)
O14	0.096 (4)	0.097 (4)	0.111 (4)	-0.025 (3)	0.003 (3)	0.022 (3)
015	0.104 (4)	0.062 (4)	0.240 (8)	-0.005 (3)	0.009 (4)	0.019 (4)
016	0.147 (5)	0.115 (5)	0.147 (5)	-0.045 (4)	0.002 (4)	-0.033 (4)
017	0.124 (4)	0.083 (4)	0.131 (5)	-0.014 (3)	-0.059 (4)	-0.007 (3)
N15	0.082 (4)	0.062 (3)	0.090 (4)	0.016 (3)	-0.017 (3)	-0.016 (3)
C43	0.081 (5)	0.062 (4)	0.102 (5)	0.014 (3)	-0.021 (4)	-0.004 (4)
C44	0.183 (9)	0.110 (7)	0.120 (7)	0.011 (6)	0.068 (7)	0.010 (6)
C45	0.107 (6)	0.107 (7)	0.098 (5)	0.016 (5)	-0.045 (5)	-0.007 (5)
O18	0.159 (13)	0.141 (13)	0.085 (8)	0.078 (9)	-0.080 (8)	-0.072 (9)
N16	0.108 (12)	0.055 (6)	0.057 (6)	0.000 (7)	0.015 (6)	0.001 (5)
C46	0.098 (10)	0.074 (9)	0.124 (13)	0.030 (7)	0.036 (9)	0.023 (9)
C47	0.112 (10)	0.094 (9)	0.091 (9)	-0.051 (8)	0.027 (8)	-0.025 (7)
C48	0.16 (2)	0.099 (12)	0.107 (13)	-0.079 (13)	0.045 (13)	-0.044 (11)
O18′	0.082 (12)	0.058 (9)	0.137 (19)	-0.033 (9)	-0.067 (11)	0.020 (11)
N16′	0.061 (11)	0.082 (11)	0.019 (7)	-0.010 (8)	0.008 (6)	-0.019 (7)
C46′	0.053 (10)	0.049 (10)	0.090 (14)	-0.001 (8)	0.016 (10)	-0.004 (9)
C47′	0.106 (17)	0.12 (2)	0.065 (11)	0.070 (15)	0.019 (11)	0.034 (12)
C48′	0.068 (17)	0.17 (4)	0.094 (19)	0.007 (18)	0.011 (14)	-0.09 (2)

Geometric parameters (Å, °)

Zn1—O4 ⁱ	2.080 (2)	C24—C25	1.368 (5)
Zn1—N7	2.119 (3)	C24—H24	0.9500
Zn1—O1	2.117 (2)	C25—H25	0.9500
Zn1—N1	2.156 (3)	C26—C27	1.369 (5)
Zn1—N4 ⁱⁱ	2.242 (3)	C26—H26	0.9500
Zn1—N3	2.248 (3)	C27—C28	1.406 (6)
Zn2—O2 ⁱⁱⁱ	2.052 (2)	C27—H27	0.9500
Zn2—N9	2.121 (3)	C28—C29	1.385 (6)
Zn2—O3	2.139 (2)	C29—C30	1.363 (5)
Zn2—N2	2.148 (3)	С29—Н29	0.9500
Zn2—N6 ^{iv}	2.210 (3)	С30—Н30	0.9500
Zn2—N5	2.269 (3)	C31—C32	1.528 (5)
O1—C31	1.253 (5)	C32—C33	1.526 (5)
O2—C31	1.268 (4)	С32—Н32	1.0000
O2—Zn2 ^v	2.052 (2)	C33—C34	1.500 (6)
O3—C37	1.254 (4)	C33—H33A	0.9900
O4—C37	1.254 (4)	С33—Н33В	0.9900
O4—Zn1 ^{vi}	2.080 (2)	C34—C35	1.547 (7)
N1-C1	1.332 (5)	C34—H34A	0.9900
N1C5	1.344 (5)	C34—H34B	0.9900
N2-C6	1.338 (5)	C35—C36	1.462 (8)
N2-C10	1.340 (5)	C35—H35A	0.9900
N3—C15	1.337 (5)	C35—H35B	0.9900
N3—C11	1.338 (5)	C36—H36A	0.9900
N4—C20	1.325 (5)	C36—H36B	0.9900

N4—C16	1.348 (5)	C37—C38	1.541 (5)
N4—Zn1 ^{iv}	2.242 (3)	C38—C39	1.522 (5)
N5—C21	1.335 (5)	С38—Н38	1.0000
N5—C25	1.346 (5)	C39—C40	1.511 (6)
N6-C26	1.334 (5)	С39—Н39А	0.9900
N6—C30	1.342 (5)	С39—Н39В	0.9900
N6—Zn2 ⁱⁱ	2.210 (3)	C40—C41	1.538 (7)
N7—C32	1.487 (5)	C40—H40A	0.9900
N7—H7A	0.9200	C40—H40B	0.9900
N7—H7B	0.9200	C41—C42	1.457 (7)
N8—C36	1.513 (7)	C41—H41A	0.9900
N8—H8A	0.9100	C41—H41B	0.9900
N8—H8B	0.9100	C42—H42A	0.9900
N8—H8C	0.9100	C42—H42B	0.9900
N9—C38	1.486 (4)	O1W—H1A	0.9547
N9—H9A	0.9200	O1W—H1B	0.8984
N9—H9B	0.9200	N11—O6	1.234 (6)
N10—C42	1.486 (6)	N11—07	1.236 (6)
N10—H10A	0.9100	N11—O5	1.251 (6)
N10—H10B	0.9100	N12—010	1.236 (5)
N10—H10C	0.9100	N12—O8	1.250 (5)
C1—C2	1.398 (6)	N12—09	1.262 (5)
C1—H1	0.9500	N13—012	1.230 (4)
C2—C3	1.379 (5)	N13-013	1.239 (5)
C2—H2	0.9500	N13-011	1.263 (5)
C3—C4	1 395 (5)	N14-015	1 212 (6)
C3—C8	1 501 (4)	N14-016	1 231 (6)
C4-C5	1 385 (5)	N14-014	1.297 (6)
C4—H4	0.9500	017	1 233 (6)
C5—H5	0.9500	N15-C43	1 319 (6)
C6—C7	1 361 (5)	N15-C45	1 441 (6)
C6—H6	0.9500	N15-C44	1 444 (6)
C7—C8	1 389 (5)	C43—H43	0.9500
C7—H7	0.9500	C44—H44A	0.9800
C_{8}	1 385 (5)	C44—H44B	0.9800
C_{0} C_{10}	1 387 (6)	C44—H44C	0.9800
C9H9	0.9500	C45 H 45A	0.9800
C10 H10	0.9500	C45 H45B	0.9800
C_{11} C_{12}	1 382 (5)	C_{45} H45C	0.9800
C11_H11	0.9500	018-016	1 229 (9)
C12 - C13	1 389 (5)	N16-C46	1.229(9) 1.314(7)
C12—H12	0.9500	N16-C47	1.314(7) 1 444(8)
C13—C14	1 387 (5)	N16-C48	1 463 (8)
C13—C18	1.307 (3)	C46—H46	0.9500
C_{14} C_{15} C_{15}	1 372 (5)	С47—Н47А	0.9800
C14—H14	0.9500	C47 H47B	0.9800
C15H15	0.9500	C47 = H47C	0.9000
C16_C17	1 393 (5)	C_{48} H48 Δ	0.9800
C16_H16	0.9500	C48_H48B	0.9800
010-1110	0.7500		0.9000

C17—C18	1.401 (5)	C48—H48C	0.9800
С17—Н17	0.9500	O18′—C46′	1.230 (9)
C18—C19	1.367 (5)	N16′—C46′	1.310 (8)
C19—C20	1.386 (5)	N16′—C47′	1.454 (9)
С19—Н19	0.9500	N16′—C48′	1.461 (8)
C20—H20	0.9500	C46'—H46'	0.9500
C21—C22	1.378 (5)	C47′—H47D	0.9800
C21—H21	0.9500	С47′—Н47Е	0.9800
C22—C23	1.390 (5)	C47′—H47F	0.9800
C22—H22	0.9500	C48′—H48D	0.9800
C23—C24	1.383 (5)	C48′—H48E	0.9800
C23—C28	1.476 (5)	C48′—H48F	0.9800
O4 ⁱ —Zn1—N7	101.75 (11)	C22—C23—C28	121.2 (3)
O4 ⁱ —Zn1—O1	176.88 (10)	C25—C24—C23	120.3 (4)
N7—Zn1—O1	79.54 (11)	C25—C24—H24	119.8
$O4^{i}$ —Zn1—N1	87.76 (11)	C23—C24—H24	119.8
N7—Zn1—N1	170.06 (13)	N5-C25-C24	124.2 (4)
O1—Zn1—N1	91.12 (11)	N5—C25—H25	117.9
$O4^{i}$ —Zn1—N4 ⁱⁱ	92.15 (10)	C24—C25—H25	117.9
N7—Zn1—N4 ⁱⁱ	92.09 (13)	N6-C26-C27	124.2 (4)
O1—Zn1—N4 ⁱⁱ	90.64 (10)	N6—C26—H26	117.9
N1—Zn1—N4 ⁱⁱ	84.57 (12)	C27—C26—H26	117.9
O4 ⁱ —Zn1—N3	87.85 (11)	C26—C27—C28	119.3 (4)
N7—Zn1—N3	93.47 (13)	С26—С27—Н27	120.4
O1—Zn1—N3	89.23 (11)	C28—C27—H27	120.4
N1—Zn1—N3	89.76 (12)	C29—C28—C27	116.4 (3)
N4 ⁱⁱ —Zn1—N3	174.33 (15)	C29—C28—C23	123.0 (3)
O2 ⁱⁱⁱ —Zn2—N9	102.08 (11)	C27—C28—C23	120.6 (4)
O2 ⁱⁱⁱ —Zn2—O3	179.04 (10)	C30—C29—C28	120.0 (4)
N9—Zn2—O3	77.21 (11)	С30—С29—Н29	120.0
O2 ⁱⁱⁱ —Zn2—N2	91.85 (11)	С28—С29—Н29	120.0
N9—Zn2—N2	166.03 (12)	N6-C30-C29	123.9 (4)
O3—Zn2—N2	88.87 (11)	N6-C30-H30	118.0
$O2^{iii}$ —Zn2—N6 ^{iv}	88.14 (10)	С29—С30—Н30	118.0
N9—Zn2—N6 ^{iv}	94.08 (13)	O1—C31—O2	125.6 (3)
O3—Zn2—N6 ^{iv}	91.26 (10)	O1—C31—C32	119.8 (3)
N2—Zn2—N6 ^{iv}	87.23 (12)	O2—C31—C32	114.5 (4)
O2 ⁱⁱⁱ —Zn2—N5	87.49 (10)	N7—C32—C33	113.9 (3)
N9—Zn2—N5	91.50 (12)	N7—C32—C31	110.9 (3)
O3—Zn2—N5	93.16 (10)	C33—C32—C31	111.3 (3)
N2—Zn2—N5	88.14 (12)	N7—C32—H32	106.8
$N6^{iv}$ —Zn2—N5	173.53 (15)	С33—С32—Н32	106.8
C31—O1—Zn1	116.2 (2)	С31—С32—Н32	106.8
$C31$ — $O2$ — $Zn2^{v}$	129.8 (3)	C34—C33—C32	116.0 (4)
C37—O3—Zn2	115.8 (2)	С34—С33—Н33А	108.3
C37—O4—Zn1 ^{vi}	129.5 (2)	С32—С33—Н33А	108.3
C1—N1—C5	117.8 (3)	С34—С33—Н33В	108.3
C1—N1—Zn1	122.4 (3)	С32—С33—Н33В	108.3

C5—N1—Zn1	119.5 (3)	H33A—C33—H33B	107.4
C6—N2—C10	116.7 (3)	C33—C34—C35	110.8 (4)
C6—N2—Zn2	119.9 (2)	С33—С34—Н34А	109.5
C10—N2—Zn2	123.2 (3)	C35—C34—H34A	109.5
C15—N3—C11	115.7 (3)	C33—C34—H34B	109.5
C15—N3—Zn1	122.1 (3)	C35—C34—H34B	109.5
C11—N3—Zn1	121.9 (2)	H34A—C34—H34B	108.1
C20—N4—C16	116.2 (3)	C36—C35—C34	113.2 (5)
C20—N4—Zn1 ^{iv}	124.8 (2)	С36—С35—Н35А	108.9
C16—N4—Zn1 ^{iv}	118.7 (2)	С34—С35—Н35А	108.9
C21—N5—C25	115.2 (3)	С36—С35—Н35В	108.9
C21—N5—Zn2	120.0 (2)	С34—С35—Н35В	108.9
C25—N5—Zn2	124.8 (2)	H35A—C35—H35B	107.7
C26—N6—C30	116.1 (3)	C35—C36—N8	111.5 (5)
C26—N6—Zn2 ⁱⁱ	122.1 (3)	С35—С36—Н36А	109.3
C30—N6—Zn2 ⁱⁱ	121.8 (3)	N8—C36—H36A	109.3
C32—N7—Zn1	111.6 (2)	С35—С36—Н36В	109.3
C32—N7—H7A	109.3	N8—C36—H36B	109.3
Zn1—N7—H7A	109.3	H36A—C36—H36B	108.0
C32—N7—H7B	109.3	O3—C37—O4	124.9 (3)
Zn1—N7—H7B	109.3	O3—C37—C38	118.9 (3)
H7A—N7—H7B	108.0	O4—C37—C38	116.1 (3)
C36—N8—H8A	109.5	N9—C38—C39	115.5 (3)
C36—N8—H8B	109.5	N9—C38—C37	108.1 (3)
H8A—N8—H8B	109.5	C39—C38—C37	113.9 (3)
C36—N8—H8C	109.5	N9—C38—H38	106.2
H8A—N8—H8C	109.5	С39—С38—Н38	106.2
H8B—N8—H8C	109.5	С37—С38—Н38	106.2
C38—N9—Zn2	110.6 (2)	C40—C39—C38	112.9 (4)
C38—N9—H9A	109.5	С40—С39—Н39А	109.0
Zn2—N9—H9A	109.5	С38—С39—Н39А	109.0
C38—N9—H9B	109.5	С40—С39—Н39В	109.0
Zn2—N9—H9B	109.5	С38—С39—Н39В	109.0
H9A—N9—H9B	108.1	H39A—C39—H39B	107.8
C42—N10—H10A	109.5	C39—C40—C41	113.7 (5)
C42—N10—H10B	109.5	С39—С40—Н40А	108.8
H10A—N10—H10B	109.5	C41—C40—H40A	108.8
C42—N10—H10C	109.5	C39—C40—H40B	108.8
H10A—N10—H10C	109.5	C41—C40—H40B	108.8
H10B—N10—H10C	109.5	H40A—C40—H40B	107.7
N1—C1—C2	122.3 (4)	C42—C41—C40	115.8 (4)
N1—C1—H1	118.8	C42—C41—H41A	108.3
C2—C1—H1	118.8	C40—C41—H41A	108.3
C3—C2—C1	119.8 (4)	C42—C41—H41B	108.3
С3—С2—Н2	120.1	C40—C41—H41B	108.3
C1—C2—H2	120.1	H41A—C41—H41B	107.4
C2—C3—C4	117.8 (4)	C41—C42—N10	116.0 (5)
C2—C3—C8	121.7 (3)	C41—C42—H42A	108.3
C4—C3—C8	120.5 (3)	N10-C42-H42A	108.3

C5—C4—C3	118.9 (4)	C41—C42—H42B	108.3
C5—C4—H4	120.5	N10—C42—H42B	108.3
C3—C4—H4	120.5	H42A—C42—H42B	107.4
N1—C5—C4	123.2 (4)	H1A—O1W—H1B	106.0
N1—C5—H5	118.4	O6—N11—O7	122.3 (7)
C4—C5—H5	118.4	O6—N11—O5	119.3 (7)
N2—C6—C7	123.9 (4)	O7—N11—O5	118.2 (5)
N2—C6—H6	118.0	O10—N12—O8	121.6 (4)
С7—С6—Н6	118.0	O10—N12—O9	120.6 (4)
C6—C7—C8	120.0 (4)	O8—N12—O9	117.7 (4)
С6—С7—Н7	120.0	O12—N13—O13	120.6 (4)
С8—С7—Н7	120.0	O12—N13—O11	119.7 (4)
C9—C8—C7	116.8 (3)	O13—N13—O11	119.8 (4)
C9—C8—C3	122.2 (3)	O15—N14—O16	123.0 (7)
C7—C8—C3	121.0 (3)	O15—N14—O14	120.5 (6)
C10—C9—C8	119.8 (4)	O16—N14—O14	115.8 (6)
С10—С9—Н9	120.1	C43—N15—C45	120.1 (5)
С8—С9—Н9	120.1	C43—N15—C44	120.4 (5)
N2—C10—C9	122.8 (4)	C45—N15—C44	119.5 (5)
N2-C10-H10	118.6	017—C43—N15	123.5 (6)
C9—C10—H10	118.6	017—C43—H43	118.3
N3-C11-C12	124.1 (4)	N15—C43—H43	118.3
N3-C11-H11	118.0	N15—C44—H44A	109.5
C12—C11—H11	118.0	N15—C44—H44B	109.5
$C_{11} - C_{12} - C_{13}$	119 3 (4)	H44A - C44 - H44B	109.5
$C_{11} = C_{12} = H_{12}$	120.3	N15— $C44$ — $H44C$	109.5
C13 - C12 - H12	120.3	$H44\Delta$ $C44$ $H44C$	109.5
$C_{13} = C_{12} = C_{12}$	116.8 (3)	H44B C44 H44C	109.5
C14 - C13 - C12	110.3(3) 122.2(3)	N15 C45 H45A	109.5
$C_{12} = C_{13} = C_{18}$	122.2(3) 121.0(4)	N15 C45 H45R	109.5
$C_{12} = C_{13} = C_{16}$	121.0(4) 110.7(3)	$H_{15} = C_{45} = H_{145} B$	109.5
$C_{15} = C_{14} = C_{15}$	119.7 (3)	$\mathbf{M}145\mathbf{A}\mathbf{-}\mathbf{C}45\mathbf{-}\mathbf{M}45\mathbf{D}$	109.5
$C_{13} = C_{14} = H_{14}$	120.2	$H_{45} = C_{45} = H_{45} C_{45}$	109.5
N2 C15 C14	120.2	H45A - C45 - H45C	109.5
N3-C15-C14	124.2 (4)	H45B - C45 - H45C	109.5
N3-C15-H15	117.9	C40 - N10 - C47	119.0(7)
C14—C15—H15	117.9	C40 - N10 - C48	121.0 (8)
N4—C16—C17	123.5 (4)	C4/—N16—C48	119.7 (7)
N4—C16—H16	118.2	018—C46—N16	123.2 (10)
C17—C16—H16	118.2	O18—C46—H46	118.4
C16—C17—C18	118.6 (4)	N16—C46—H46	118.4
С16—С17—Н17	120.7	C46'—N16'—C47'	120.5 (8)
C18—C17—H17	120.7	C46'—N16'—C48'	121.3 (9)
C19—C18—C17	117.7 (3)	C47'—N16'—C48'	118.2 (8)
C19—C18—C13	121.5 (4)	O18'—C46'—N16'	123.6 (11)
C17—C18—C13	120.8 (3)	O18'—C46'—H46'	118.2
C18—C19—C20	119.6 (4)	N16'—C46'—H46'	118.2
C18—C19—H19	120.2	N16'—C47'—H47D	109.5
С20—С19—Н19	120.2	N16'—C47'—H47E	109.5
N4—C20—C19	124.3 (4)	H47D—C47′—H47E	109.5

supplementary materials

N4—C20—H20	117.8	N16'—C47'—H47F	109.5
С19—С20—Н20	117.8	H47D—C47′—H47F	109.5
N5-C21-C22	124.2 (4)	H47E—C47′—H47F	109.5
N5-C21-H21	117.9	N16'—C48'—H48D	109.5
C22—C21—H21	117.9	N16'—C48'—H48E	109.5
C21—C22—C23	120.0 (4)	H48D—C48′—H48E	109.5
C21—C22—H22	120.0	N16'—C48'—H48F	109.5
С23—С22—Н22	120.0	H48D—C48′—H48F	109.5
C24—C23—C22	116.0 (3)	H48E—C48'—H48F	109.5
C24—C23—C28	122.9 (4)		

Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) x, y, z+1; (iii) -x+2, y+1/2, -z+1; (iv) x, y, z-1; (v) -x+2, y-1/2, -z+1; (vi) -x+1, y+1/2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>A</i> ···O15	0.95	1.91	2.823 (11)	159
O1 <i>W</i> —H1 <i>B</i> ···O10 ⁱⁱ	0.90	2.48	3.182 (8)	136
N7—H7A···O3 ⁱ	0.92	2.54	3.066 (4)	117
N7—H7 <i>B</i> ···O18	0.92	2.03	2.940 (9)	167
N7—H7 <i>B</i> ···O18′	0.92	2.32	3.215 (17)	163
N8—H8A···O17 ^{vii}	0.91	1.86	2.755 (7)	166
N8—H8 <i>B</i> ···O8 ^{vii}	0.91	2.04	2.842 (6)	147
N8—H8 <i>B</i> ····O9 ^{vii}	0.91	2.39	3.057 (6)	130
N8—H8C····O5 ^{vii}	0.91	2.00	2.907 (7)	172
N9—H9A···O1 ⁱⁱⁱ	0.92	2.44	2.999 (4)	119
N9—H9 <i>B</i> ···O10	0.92	2.16	3.075 (4)	174
N10—H10A…O14	0.91	2.00	2.869 (6)	160
N10—H10A…O16	0.91	2.44	3.183 (8)	139
N10—H10 <i>B</i> ···O11 ^{viii}	0.91	2.00	2.844 (5)	154
N10—H10B…O12 ^{viii}	0.91	2.48	3.066 (6)	123
N10—H10 <i>C</i> ···O7 ⁱⁱ	0.91	2.04	2.914 (7)	161

Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) x, y, z+1; (iii) -x+2, y+1/2, -z+1; (vii) x, y-1, z; (viii) x, y+1, z.